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Abstract 
If the rotation of the central body become slower and slower, its specific angular momentum 

tends to become zero and in that case the Kerr metric in limit tends to become the 

Schwarzschild metric. In such a limiting case, the orbits corresponding to rms, rmb and  rph 

near the horizon have also been obtained .Expressions for energy, angular momentum and 

other physically interesting quantities are obtained for circular orbits in Equatorial plane of 

charge free black hole are obtained. As, rms, rmb and rph are calculated for the direct and 

retrograde motions. In  various orbits near the event horizon are considered, the components 

of velocity vector of the test particle and the tangent vector field to the photon trajectories are 

evaluated and the frequency shift of emitted radiation from various circular orbits are 

considered. 

Keywords: - Energy, Rotational, Orbit of marginally stable, Photon ortbit.Radius of 

marginally stable orbit. 

 

1- ELEMENTARY IDEA 
Of the orbits of test particles with fixed 

rest mass ‘’ and fixed angular momentum 

‘L’ and which are not trapped by the black 

hole, the orbits with the given value of 

‘L’ and as long as ‘L/’ is greater than 

the minimum value for direct circular orbit 

(particle counter revolving with black 

hole). If ‘L/’ has values in the range for 

which there are no circular orbits in the 

equatorial plane of the wblack hole, then 

the minimum energy for untapped orbits is 

associated with orbit out of the plane. If 

the particle is not trapped by a black hole it 

is possible that gravitational radiation from 

it may cause to relax a part of its energy 

orbit. In view of the great importance of 

circular orbits in astrophysical calculations 

only such orbits will be considered here. 

Certain types of particles orbits out of the  

equatorial plane have been considered by 

Welkins. Circular orbits in the equatorial 

plane of black hole have been examined by 

Bardeen, Press and teukolskey. A detailed 

study of the properties of time-like and 

null geodesics, especially of the stable 

circular orbits, in the charge free Kerr 

metric have been  

presented by Bardeen. He had found that 

the radius for marginally stable circular 

orbit, the radius for marginally bound 

circular orbit and the radius for circular 

photon orbit for both direct and retrograde 

motion in the case of extreme Kerr metric 

and also of Schwarzschild metric. In his 

case in three direct orbits, mentioned 

above, all seem to coincide with the event 

horizon in the extreme Kerr black hole. 

This apparent conflict with the null 

character of the  

horizon is because of the fact that the 

radial co-ordinate ‘r’ misrepresents the 

geometry of the space-time near the event 

horizon in the extreme case. An 

infinitesimal range ‘r’ near the horizon can 

correspond to an infinite range of proper 

radial distance. He has obtained the three 

different orbits for r = rms(marginally 

stable), r = rmb(marginally bound) and r = 

rph(photon orbit) near the horizon by a 
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suitable approximation. In case of 

Schwarzschild  

metric also, he was obtained the three 

orbits as rms  

= 6m, rms = 4m and rph = 3m. But in this 

case there are no circular orbits 

corresponding to r = rms, r = rmb and r = 

rph, coinciding with the event horizon. 

it has been shown that in addition to the 

stable circular orbits obtained by Bardeen 

there exists a circular orbit outside the ergo 

sphere of the Kerr black hole where also 

the direct marginally stable, the marginally 

bound and circular photon orbits coincide. 

In the Kerr metric, if the rotation of the 

central body become slower and slower, its 

specific angular momentum tends to 

become zero and in that case the Kerr 

metric in limit tends to become the 

Schwarzschild metric. In such a limiting 

case, the orbits corresponding to rms, rmb 

and  rph near the horizon have also been 

obtained in this chapter. 

Expressions for energy, angular 

momentum and other physically 

interesting quantities are obtained for 

circular orbits in Equatorial plane of 

charge free black hole are obtained. As, 

rms, rmb and rph are calculated for the 

direct and retrograde motions. In  various 

orbits near the event horizon are 

considered, the components of velocity 

vector of the test particle and the tangent 

vector field to the photon trajectories are 

evaluated and in Sec.6, the frequency shift 

of emitted radiation from various circular 

orbits are considered. 

2- BOYER-LINDQUIST OF CO-

ORDINATES 

The charge free Kerr metric in usual 

Boyer-Lindquist of co-ordinates is - 

ds2 = 2-1dr2 + 2d2 + -
2Sin2 [adt - (r2 + a2)d]2 -
(r-2 [dt - aSin2d]2  

= Adr2 + Bd2 + Cd2 - Ddt2 - 
2Fddt    
where,    

2 = r2 + a2Cos2, 

A = 2-1, B = 2, 

C = -2Sin2[(r2 + a2)2 - 

a2Sin2], 
D = -2[ - a2Sin2], 
F = 2mraSin2 -1/2, 
 = r2 - 2mr + a2, 
a, m are respectively, the specific angular 

momentum and mass of the black hole. 

The equations of motion in this case have 

been given by Carter (41) as follows: 

2r. = √R,    

2. = √q,    

2. = LSin-2- aE+ a-1P, 
2t. = aL-aESin2+ (r2 + 

a2)-1P,  

 = Q - Cos2a2(2- E2) + 

L2Sin-2,     

P = E(r2 + a2) - La,   

R = P2 - 2r2 + Q (L - 

aE2),   
The dots denote differentiation with 

respect to  

a parameter , defined in terms of the 

proper time  

by  =. 
The signs in the above equations can be 

chosen independently. E, L and Q are three 

constants of the particle’s motion. E and L 

refer respectively, to the energy and to the 

 -component of angular momentum, Q is 

related to the velocity,. 
Wilkins has shown that an orbit has Q = 0 

if and only id is confirmed to the 

equatorial plane (= /2) of the Kerr 

metric. This gives from above 
R = E2r2(r2 + a2) + 2mr(L - 

aE)2-r2(L2 - 2) 
For the stable circular orbits the particles 

radial co-ordinate will be stable at some 

value of ’r’ if R(r) vanishes for that  values 

of ‘r’ and become negative nearby. This 

will be the case if, 
R(r)  = 0   

R  = 0   

r 

2R  = 0   

r2 
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If instead of the result obtained we have 

2
R/r

2
 > 0, the orbit will be unstable 

circular orbit. 

The effective radial potential is defined as 

that value of E which annuls the 

expression. In a circular orbit, the test 

particle experiences a minimum effective 

potential. 

By solving above pair of equations for E 

and L as functions of ‘r’ we get for the 

circular orbits following expressions:- 

 

   E   2r(r - m) 

=       

                     2r2 - k2(r2 + a2) 

 

L    ½[a 2m + k  r(r2 + a2)] 

= ±        

 K2 +1)2m(r2 + a2) - [a √2m + K √r(r2 + a2)]2  

          

where, 

   ar(r - m) √2mr + k  √2rm 

K  = 

  √(r2 + a2)[r(r-m) (2m - r) + m]    

The upper sign is for direct orbit (L>0) and lower sign is for retrograde orbit (L<0). 

Other physically interesting quantities for the circular orbits are the angular of the particle as 

seen from infinity and the linear velocity of orbit relative to locally non-rotating observer. 

They are given respectively as, 

   d   a √2mr + (r-2m)k (r2 + a2) 

=   = 

    dt  √2mr(r2 + a2) - 2amk  √(r2 + a2)  

          

    ½ [a √2mr + kr √ (r2 + a2)]
  =  

   [√2mr(r2 + a2) - 2amk  √(r2 + a2)] 

           

3- THE DIRECT EQUATORIAL ORBIT HAS THE MAXIMUM BINDING ENERGY 

At large r(r >– m) both di rect and retrograde orbits are bound having nearly equal binding 

energies. At small ‘r’, due to certain “spin-orbit coupling” affect, the binding energy 

increases for the direct orbit and decreases for the retrograde orbit. The direct equatorial orbit 

has the maximum binding energy (1 - E/) (and the maximum value of L/). The counter 

revolving equatorial orbit has the smallest binding energy. The maximum binding energy is 

reached at the radius where the orbit becomes unstable. Hence, the bound orbit. Such an orbit 

is situated at the inflexion point of the effective radial potential that is, 

  With  
ଶR
rଶ = 0     

For such an orbit, we find from the following: 

  

     

                                                2r2m 

K2 =          

  (r2 + a2)(3r - 2m), 

   

[ar(r - m) √2mr + √2rm]2 (3r - 2m) 
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= 2r2m[r(r - m)(2m - r) + m]2     
Equation determines the radius of marginally stable circular orbits. 

In case of extreme Kerr metric (a = m),  gives for direct orbit (upper sign), 

     3 +√5 
rms = m,   m    

       2 
and for retrograde orbit (lower sign), 
   rms = 9m      

Wilkins has illustrated by plotting L against r that all orbits with radius <– 5.3 are co-

revolving (L>0). Hence this also shows that the orbit  

corresponding to rms = (3 +√5) m/2 is a direct orbit. 

The ergo sphere of Kerr geometry is the region between the surface of stationary rt =m+(m2 

- aCos2)½ (i.e. where g00 = D = 0) and the “one-way membrane” or event horizon r0 = 

m + (m2 - a)½. A particle entering the ergo sphere can, if it is properly powered, escape again 

to infinity. The surface of stationary is sometimes called a surface of infinity red shift. Only 

in the case of the Schwarzschild geometry (a = 0) does the surface of stationary coincide with 

the event horizon. In the general Kerr geometry, the surfaces are separated every where 

except at the poles. In case of Kerr geometry, we have two surfaces “interior null surface”, r 

= m - (m2-a2)½, the other is the “interior g00 = 0 surface”, r = m - (m2 - aCos2)½. 
Neither of these surfaces can make itself felt to a far-way  

observer. In the case of Schwarzschild geometry (a = 0), these two interior surfaces coalesce 

to two singularity, r = 0. In the equatorial plane, the  

surface of stationary takes the form rt = 2m. 

Hence the orbit - 

     3 +√5 
rms = m,   m    

       2 
Is the direct orbit lying outside the ergo sphere of the Kerr metric. 

In case of Schwarzschild metric (a = 0) we get from  

   
r
ms = 2m, 6m     

As has been started that the maximum binding energy is given by (1 - E/). At a smaller 

radius the value of E/ becomes greater than one and the orbits become unbounded as well as 

being unstable. Hence the radius of marginally bound circular orbit can be obtained from the 

equation 

    
𝐸𝜇 = 1       

Equation  together with  give. 
          2mr 

K2 =        
  r2 + a2 

[ar(r - m) √2mr –+ √2rm]2 
 

= 2rm[r(r - m)(2m - r) + m]2  

Equation determines the radius of marginally bound orbits. 

For extreme Kerr metric, gives for direct orbit (upper sign) 

   rmb = m,
ଷ+ √ହ   ଶ  m     

and for retrograde orbit (lower sign) 
   rmb = (3 + √2)m     
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For Schwarzschild metric we get 
   r = 2m, 4m      

An unstable circular photon orbit is obtained when both E/ and L/ become infinitely large. 

This will be the case when in the limit 

   2r2 -k2 (r2 + a2)  0    

From previous result, we get the following expression for the radius of unstable photon 

circular orbit - 

  [ar(r - m) √2mr + √2rm]2 
  = 2r2[r(r - m)(2m - r) + m]2   

In case of extreme Kerr metric we get from equation, 

   rph = m, ଷ+ √ହ   ଶ  m     

   
r
ph = 4m for retrograde orbit   

For Schwarzschild case (a = 0) we have 
   rph = 2m, 3m    

It is obvious from  that as has been found out by Bardeen,here also we get that the direct 

marginally stable orbit, the direct marginally bound orbit, the direct photon orbit and the 

event horizon seem to coincide at r = m where  

a = m. The apparent conflict with the null character of the event horizon is because the co-

ordinate ‘r’ misrepresents the geometry of the space time near  

r = m where a = m. 

By putting r = m(1 +), a = m(1 -), <<1 and 0 (with upper sign) and 

approximating up to the appropriate order of and ,we get for the three orbits near r = m the 

following expressions: 

   rms = m [1 + (4)1/3],   

   rmb = m [1 + 21/2],   

   rph = m [1 + { (8/3)}1/2],   
These results are the same as have been  

obtained by Bardeen. 

The limiting energies E and velocities as am for the orbits and are obtained from and as 

follows : 

 E/ = 1/√3 = 0.58,  1/2 at r = rms   

 E/ = 1,     2-1/2 at r = rmb    

  As a0, the Kerr metric tends to become the Schwarzschild metric. If in 

the Kerr metric terms containing a2 and higher powers of a are  

neglected, it become : 

  dr2 

ds2 =       + r
2
d2

 + Sin
2 d2

 - {1 - (2m/r)} dt
2
 

    {1 - (2m/r)} 

 -(4ma/r)dtdSin2     

Equation spews that the metric represented by it has a small departure from spherical 

symmetry of Schwarzschild metric. Thus can be looked upon from another point of view. We 

consider a Schwarzschild black hole. “A spherical cloud of dust gets accreted into this hole. It 

has been mentioned in Chapter-III, that such a spherical cloud of dust will collapse to 

Schwarzschild black hole provided only that it is not endowed with angular momentum. In 

case it has less than a critical angular momentum, it will settle down to a uniquely defined but 

deformed standard black hole configuration (Kerr geometry). This is the conclusion to which 

one has been led by the analysis presented by Israel and others. A full dynamical analysis by 

Price  reveals that as time runs out all small perturbations in the metric of Schwarzschild goes 
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to zero, but the angular momentum is conserved and its effect on the metric does not decay 

with time, neither does it lead to any singularity near the Schwarzschild surface. The small 

perturbation due to the angular momentum is given by, 

  

  -Sin2(angular momentum)                      -2Sin2.ma 

h03 =       = 

    r     r   

This perturbation is the same as shown which is the limiting case of Kerr metric as a0 and 

terms containing a2 and higher powers of a are neglected. We proceed to consider the stable 

circular orbits near the event horizon of such a perturbed metric.  

For the Kerr metric the event horizon is given by,  
  rt = m +  √m2 - a2   

Putting  = a/m, reduces to 

  rt = 2m(1 - 2/4)     

where higher powers of higher than 2
 have been neglected.  it is evident that the event 

horizon for the Kerr metric tends to become the event horizon rt = 2m of perturbed 

Schwarzschild metric if terms containing 2
 and higher powers of 2 are  

neglected. rt = 2m is also the event horizon of Schwarzschild metric. 

We will consider here the nature of marginally stable, marginally bound and photon circular 

orbits near the event horizon of perturbed metric. 

From above equations, it appears that in case a = 0(Schwarzschild metric), the orbits 

corresponding to r = rms, r = rmb and r = rph coincide the event horizon rt = 2m. 

In case of the perturbed metric these circular orbits are obtained by putting r = 2m (1 +) and 

making approximation by upto first order in  and  we get  

respectively for the three orbits: 

   rms = 2m[1 + /√2]        

   rms = 2m[1 + /√2]      

   rph = 2m[1 + /√2]      

The limiting energies and velocities for the orbit r = rms are obtained from  and  and for r = 

rms, They are obtained . They are given respectively as:  

The perturbed Schwarzschild metric may also be considered to represent the gravitational 

field of slowly totaling body. 

From  the above equations, it is evident that there is a direct orbit r = (3 +√5)m/2 where the 
direct marginally stable, the marginally bound and the direct circular photon orbit coincide. 

That the orbit r = (3 +√5)m/2 lies outside the ergo sphere has already been stated above. It 
would be interesting to know the variation in these orbits with the variation in ‘a/m’. 
Substituting r = m (p +), a = m (1 - ) where <– 1, 0 with p = (+ 1)/2, 

approximating up to first order in  and  we get - 

   = - ସd√ହሺ√ହ+ ଵሻ   , in each case and the three orbits 

respectively are given by, 

  rms = m    
ଷ +  √ହଶ  -  ସδ√ହ ሺ √ହ +  ଵሻ   

   

 

  rmb = m 
ଷ +  √ହଶ  - 

ସδ√ହ ሺ √ହ +  ଵሻ   

 

  rph = m  
ଷ +  √ହଶ  - 

ସδ√ହ ሺ √ହ +  ଵሻ   
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As am, the three orbits tend to coincide with r = m [(3 +√5)/2] but always remaining 

outside the ergo sphere. 

The limiting energies E and velocity  as am for the orbits are obtained respectively as 

follows: 

 
Eμ  5

1/4 
   = .86,  .69 for r = rms  

   √3 

 E/  1     1 for r = rmb  

It appears that the three orbits coincide even after the first approximation in  and . 

It has been noticed that the three orbits became different when an approximation is made by 

retaining third degree terms in  and . After such an approximation, we get two values for 

rms and rph. The three are given as follows. 

rms = m 
ଷ +  √ହଶ   - 

ସδ√ହ ሺ √ହ +  ଵሻ - 
ଶହ ሺ଼ √ହ−ଵሻ√ହሺ√ହ+ ଵሻ 2 + p13 

 

 

  ~ m [2.6 - 0.6 - 0.042 - 1.53]  
 

 

r’ms = m 
ଷ +  √ହଶ   - 

ସδ√ହ ሺ √ହ +  ଵሻ - 
ଶହ ሺ଼ √ହ−ଵሻ√ହሺ√ହ+ ଵሻ 2 + p13 

 

 

  ~ m [2.6 - 0.66 - 0.042 - 0.23] 
 

                [4(216√5 - 484) - 2x5¼(√5 + 1)(271 - 115√5)] 

where p1 =  

     25(5 + √5)(2 - 5¼) 

  ~ 1.50 

 

                 [4(216√5 - 484) - 2x5¼(√5 + 1)(271 - 115√5)] 

 where p2 = 

     25(5 + √5)(2 - 5¼) 

 

   ~ + 0.20 

 

rmb = m 
ଷ +  √ହଶ  - 

ସδ√ହ ሺ √ହ +  ଵሻ - ଶହ  ሺ଼ √ହ−ଵሻ√ହሺ√ହ+ ଵሻ 2 + 2+ ସ ሺଵ଼  √ହ− ଶସଶሻଶହ ሺହ + √ହሻ  



 

  ~ m[2.6 - 0.6 - 0.042 - 0.033]  
 

 

rph = m 
ଷ +  √ହଶ   - 

ସδ√ହ ሺ √ହ +  ଵሻ - 
ଶହ ሺ଼ √ହ−ଵሻ√ହሺ√ହ+ ଵሻ 2 + 2 + q13 

 

  ~ m[2.6 - 0.6 - 0.042 - 0.853]  
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r’ph =m  
ଷ +  √ହଶ   - 

ସδ√ହ ሺ √ହ +  ଵሻ - 
ଶହ ሺ଼ √ହ−ଵሻ√ହሺ√ହ+ ଵሻ 2 + 2 + q13  

 

  ~– m [2.6 - 0.6 - 0.042 - 0.43]  
 

Where q1 =
ଶ ሺସଵ  √ହ− ସଷሻଵଶହ    ~ - 0.85 

   q2 = 
ଶ ሺସଵ  √ହ− ସଷሻଶହ ሺହ + √ହሻ    ~ - 0.40 

The three orbits defer only in the 

coefficients of 3. It appears that if a 

higher approximation is carried out, the 

difference in the three orbits may be more 

marked. A strong preference for the 

equatorial plane would require that ‘a/m 

not be small compare with one and hence 

<<1. To maintain this, we are not to 

retain terms in  than of degree higher than 

a reasonable limit. 
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