

ISSN: 2456-1363 International Journal of Scientific Research & Growth

A Multidisciplinary Peer Reviewed and Refereed International Journal

Volume-3 Issue-4 October- 2018 www.ijsrg.com editor@ijsrg.com

Dynamics Of Financial Structure And Value Of Firm: Evidence From Nifty

¹Mrs. Rajshree Sharma, ²Dr. Navita Nathani

¹Research Scholar, School of Studies in Management, Jiwaji University, Gwalior, M.P., India ²Associate Professor, Prestige Institute of Management, Gwalior, M.P., India Email- rajshree111@gmail.com, drnavita@prestigegwl.org

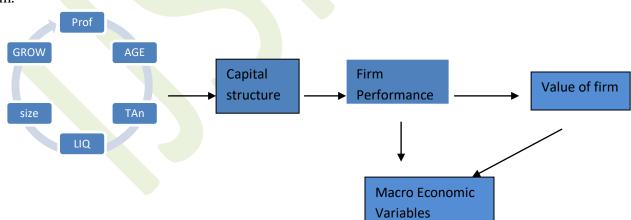
Abstract

This study examines the effect of capital structure on value of firm listed in NIFTY during 2009 to 2018. Variables including size. Profitability, Tangibility. Growth and age taken for examining as determinants of capital structure. In addition, we include the investigation of capital structure and performance of firm and ultimately result on firm's value. Moreover, macroeconomic indicators are also used to see the impact on firm performance and value of firm. Using panel data regression, the result shows that profitability, liquidity, size growth opportunity and age has strong relation with financial decision in Indian companies and also seen that capital structure decision has strong impact on firms performance similarly firm performance is related with firm value.

The study also reveals that macroeconomic variable among GDP, inflation and CPI, CPI has no relation with performance as well as value of firm. GDP has relation with firms' value and inflation has strong relation with the firm performance.

Keywords: Indian companies, capital structure decision, determinants value of firm, macro economic variables.

1- INTRODUCTION


Capital structure decision is very important for any organization. As it is crucial part of financial management and carry ample of theoretical base which gives it perplexity on adoption of financial policy. The firm can issue many different securities, but it is attempt to issue best combination of components. The choice of debt equity for the company involves tradeoff between risk and return. Many specialists suggests to have debt than equity but excessive use of debt may endanger the survival of firm while optimum use may give benefit to existing equity holders. The firm choice of debt equity depends on many factors. The empirical work mainly lagged behind theoretically specially in case of developing countries.

On the other hand apart from financial factor some nonfinancial factors are also to be considered as manages and executives behavior and role somehow to be considered. In brief, debt is not an unmixed blessing and has dilemma for the finance manager. The finance manager expected to design best and optimum financial structure which gives value to firm.

2- LITERATURE REVIEW

The fund decisions are very important for any organization. It's crucial but has strong impact on the firm performance and value of firm. The determination of sources of fund either from debt or equity. The component of capital mix is long term source of fund. Company uses the variety of combination. Debt is an alternative of capital structure where use of debt at a given limit will be profitable than the company own capital. It will be lower the cost of capital and increase the value of firm. One of the theories of capital structure is funding in sequence known as pecking order theory. This theory was given by Gordon Donaldson in 1961.the funding preferences begins from retained earnings to debt issue and to issue of equity. This sequence is based on cost of capital structure and believes that equity is most costly source of fund. Tradeoff theory (Mayer, 1977, 1984) explained just opposite to pecking order that use of debt can increase the value of firm to certain optimum level and often it will increase the bankruptcy and financial distress which will lead to decrease in value of firm. This theory explains about the relationship between bankruptcy and financial distress which will lead to decrease in value of assets. This 9theory is based on advantages and disadvantages of debt to firm. The companies continue to pay greatest interest and possible reduction of cost but at certain level it creates the financial distress aiming the shareholder which devalues the firm. As many researcher plug the idea of identification of characteristics plays role in deciding capital structure. (Bradley et al., 1984; Taggart Robert, 1985; Titman & Wessels, 1988). Kremp & Stöss, 2001, Chen (2004) and Gaud, Jani, Hoesli, and Bender (2005). Correa, Fernando, & Nakamura, 2005; Cristian Espinosa, Carlos Maquieira, Joao Paulo Vieito, & MarceloGonzález, 2012; Huang & Song, 2006; Köksal & Orman, 2014; Memon et al., 2015; Pandey, 2004; Paredes Gómez et al., 2016; Qureshi, 2009; Wiwattanakantang, 1999). In this context, the pio-neering study of Booth et al. (2001). In this study we also assume that capital structure has effect on firm performance and value of firm. Prateepkanth (2011) identified the impact of capital structure decision on value of firm. The result shows that capital structure has negative relation. Abzari, Mehdi, Fathi, Saeed and Nematizadeh, Fateme (2012) examined the effect of macroeconomic variable on capital structure decisions listed in Tehran Stock Exchange. Mine aysen Doyren (2013) establishes the relationship between firm performance and some micro and macro variables. Capital structure decisions are still puzzle for manager even though it is examined a lot.

With reference to the above discussion of theories and previous research using debt ratio as capital structure indicator and ROA as firm performance which is measure by EBIT to Total assets. ROA is most effective measure taken by many researchers. There is also has the relationship between ROA and ROE. If company has good ROA will generate Better ROE. Based on model discussed above the overall research can be arrange in a way to analyze firm capital structure decision and macro economic factors relation with performance and value of firm.

Research Hypothesis

Determinants of capital structure, capital structure measure and macro economic factors simultaneous effect on value of firm.

There is no relationship between of profitability on capital structure.

There is no relationship between of Growth on capital structure.

There is no relationship between of Size on capital structure.

There is no relationship between of Liquidity on capital structure.

There is no relationship between of Tangibility on capital structure.

There is no relationship between of Age on capital structure.

There is no relationship between capital structure and firm performance.

There is no relationship between firm performance and value of firm.

There is no relationship between macro economic variables and firm performance.

There is no relationship between macro economic variables and firm value.

3- RESEARCH METHODOLOGY

This was empirical study performed to discover the effect of capital structure decision on value of firm considering the macro economic variables. Measuring the performance of firm and its effect on value of firm is also included in this study. This is quantitative research that is focused on numerical data which is processed through statistical tools. To answer the established hypothesis used appropriate tools to examine the relation of panel data analyze and aim to open the relationship between independent and dependent variable.

Population and Sample

This study includes the companies listed on National stock exchange in India. Study considers only NSE. The unit of analysis of this study to research the pattern of financial structure and variable that has effect on financial structure and value of firm. The sample taken from money control and for the period during 2009 to 2018. The research method used sampling technique. This study uses the secondary data and processed data available in time series .Because the study used econometric model, this study uses panel data analysis. Regression method is used to estimate the econometric model for purpose of study of independent and dependent variable.

Statistical tools and econometric models

From above hypothesis mathematically termed as

1st model capital structure =f(prof, liq, tan, size, growth, Age)

 2^{nd} model capital structure =f(firm performance)

 3^{rd} model firm performance = f(mac eco) i.e. GDP,INF,CPI

 4^{th} model firm performance = f (value of firm)

 5^{th} model value of firm= f(mac eco) i.e. GDP,INF,CPI

4- RESULTS AND DISCUSSION

The descriptive statistics of study in given table 1 to find the determinants of financial structure. The mean value of independent variable Leverage and dependent variable Growth opportunity, Age, Liquidity, Profitability, size and Tangibility of sample from 2009 to 2018. The profitability reveals mean of 10.26 percent with median of 6.79 percent this shows that Indian firm has average performance. The growth opportunities stood with the men of 25.58 and median 14.84. The average of Age is 41.86 and median 14.84. The average of age is 41.86 and median is 35. The average size which is determined by log of total assets has 10.26 and median is 10.29 where as tangibility has 59.08 and median is 3.64.

Panel unit root test has been proposed by several researchers like Maddala and Wu (1999). It's mostly referred than single time series units because approximately the test statistics are approximately normally the test statistics are approximately normally distributed for the finite sample sizes. In this study we also used unit root test to examine data is stationary or not. Firstly, it is necessary to check the stationary. The series is said to be stationary when mean and auto covariance does not depend on time. All variable of unit root study it is found in our study at first difference. For unit root test Levin, Lin & Chu conducted. The hypothesis of this test are Null hypothesis process has unit root and Alternative hypothesis process has no unit root. Since our test has significant p-value as less than .05 indicates the rejection of Null Hypothesis which means data in not unit root and result is desirable. As table attach on appendix.

Panel Regression the result of pooled OLS, Fixed effect and Random effect each three equations is given on TABLE 6. After analyzing regression effect of all three fixed effect is fit for model as Hausman test is insignificant in case of equation 1 and 3 which indicates

use of random effect whereas in case of 2^{nd} model p value is significant and deliver the result of rejection of null hypothesis which indicates the use of fixed effect.

As all the dependent and independent variable has stationary data and can go for regression Analysis. As table attach on appendix. (TABLE)

Leverage and determinates

This section presents the descriptive analysis of study. The descriptive statistics of variables cover minimum, maximum, mean and standard deviation. The descriptive statistics presented table below from 2009-2018.

		GROW_O					
	LEV	PP –	AGE	LIQ	PROF	SIZE	TAN
Mean	2.62745		41.8640	1.63240	9.53730	10.2633	59.0852
	1	25.58761	0	0	0	5	4
Median	0.97000		35.0000	1.22000	6.79000	10.2947	3.64759
	0	14.84370	0	0	0	6	6
Maximum	18.1628		111.000	<mark>16.7</mark> 300	77.6100	15.0480	1132.98
	1	861.1174	0	0	0	4	3
Minimum					-		
	0.00000		2.00000	0.00000	20.4400	6.0 <mark>241</mark> 7	0.09533
	0	-69.74071	0	0	0	4	3
Std. Dev.	3.63868		24.2878	1.88636	10.2483	1.61201	143.737
	2	71.80106	8	9	0	6	2
Skewness	2.09156		0.70945	3.74011	2.17225	0.12713	3.97811
	7	8.905524	2	4	8	8	0
Kurtosis	6.87508		2.93090	23.1316	12.1872	2.99059	22.4205
	0	94.41417	7	6	3	1	4
Jarque-	677.392		42.0429	9609.11	2151.66	1.34885	9176.22
Bera	077.392	180703.8	42.0429	3	2131.00 6	1.34883 7	2
Probability	0.00000	180703.8	0.00000	0.00000	0.00000	0.50944	0.00000
Tiobaomity	0.00000	0.000000	0.00000	0.00000	0.00000	0.30944 7	0.00000
	U	0.000000	0	0	0	/	0
sum	1313.72		20932.0	816.200	4768.65	5131.67	29542.6
	5	12793.81	0	0	0	7	2
Sum Sq.			20.42.00	1775 (2)	52400 7	1206.60	1020052
Dev.	6606.76	2572541	294360.	1775.63	52408.7	1296.69	1030952
Ohaan ti	3	2572541.	8	5	7	9	4
Observatio							
ns	500	500	500	500	500	500	500
			I				

(TABLE 1)

TABLE describes the result of Housman (1978) test for the selection of fixed effect model or random effects model. Housman test for cross section random effect has Chi-square test statistics=210.6 Chi-square d.f. =7 with p-value= 0.000. The null hypothesis of cross section

random effect is rejected. In this case fixed effect estimations preferred to random effect model. The fixed effect regression equation can be expressed as:

In case of first equation where enterprise value is taken as dependent variable and other determinants of capital structure were analyzed on basis of Hausman p value found insignificant i.e. 1.0000 which means null value cannot be rejected and random effect has to be observed. Random effect reflects that size and inflation has significant effect but size is positively associated and inflation found negatively associated. Although, Hausman suggest fixed effect and R square found to be good (61.36) and fixed effect drawn PROF LIQ, SIZE TAN and AGE found significant at 1 % level where Growth opportunity found significant at 10% .this is also noticed that Tangiblity had size has positive association whereas others delivers negative relation

Indepen	Pooled O			Fixed E	ffect		Random	Effect	
dent									
variable									
	Coeffici	t-	P value	Coeffi	t-	Р	Coeffic	t-	Р
	ent	statisti		cient	statistics	valu	ient	statisti	value
		cs				e		cs	
	-	-		-		0.00	-	-	0.000
С	3.90675	4.5743	0,0000	5.3232	-	0.00	1.9908	1.6486	0.099
	6	54	0.0000	97	6.003008	00	89	35	9
	- 0.03590	- 3.1021		- 0.0322	-	0.00	- 0.0054	- 0.7903	0.429
PROF	3	47	0.0020	82	2.830763	48	86	76	7
	-	-		-			-	-	
	0.39103	6.6053		0.3578	-	0.00	0.0630	2.3512	0.019
LIQ	9	03	0.0000	41	6.081905	00	85	79	1
	0.73915	9.7570		0.8 <mark>578</mark>		0.00	0.5140	4.6364	0.000
SIZE	2	33	0.0000	91	10.97178	00	62	31	0
	0.01083	13.502		0.0109		0.00	0.0041	4.9305	0.000
TAN	6	92	0.0000	32	13.84373	00	05	33	0
	-	-		-			-	-	
GROW_	0.00138	0.9464		0.0025	-	0.08	0.0004	0.7206	0.471
OPP	5	66	0.3444	88	1.750467	07	09	14	5
	-	-		-			-	-	
1.07	0.01614	3.4635	0.000.0	0.0129	-	0.00	0.0175	1.8461	0.065
AGE	9	05	0.0006	41	2.796689	54	44	47	5
R-			0.5925			0.61			0.199
squared			65			3634			704
Adjusted									
R-			0.5876			0.60			0.174
squared			06			0.60 1660			0.174 902
						1000			902

Page 63

Prob (F- statistic)			119.50 15			51.2 4655		8.051 759
sig			0.0000 00			0.00 0000		0.000 000
D-W statistics			0.1754 25			0.17 1014		0.063 100
Hausma n test	Chi-Sq. Statistic 57.9867 18	Chi- Sq. d.	Chi-Sq. d.f. 6	Prob 0.0000	Means fixed is accepted			
Cross section			0.0000					

(TABLE 2)

Capital structure and ROA

This section considers establishing the relationship between capital structure and Return on assets to identify the firm performance impact on capital structure decision. The mean of capital structure is 2.6 and median explores the .97 where as ROA 9.53 and median is 6.79.

	Capital structure	ROA
Mean	2.627451	9.537300
Median	0.970000	6.790000
Maximum	<mark>18</mark> .16281	77.61000
Minimum	0.000000	-20.44000
Std. Dev.	3.638682	10.24830
Skewness	2.091567	2.172258
Kurtosis	6.875080	12.18723
Jarque-Bera	677.3927	2151.666
Probability	0.000000	0.000000
Sum	1313.725	4768.650
Sum Sq. Dev.	6606.763	52408.77

Page 64

Observations		
	500	500

(TABLE 3)

Indepen	Pooled O	LS		Fixed E	ffect		Random	Effect	
dent									
variable									
	Coeffici	t-	P value	Coeffi	t-	Р	Coeffic	t-	Р
	ent	statisti		cient	statistics	valu	ient	statisti	value
		cs				e		CS	
С	2.73541	34.377		3.9685		0.00	2.7683	6.0496	0.000
C	4	90	0.0000	17	<mark>19.</mark> 41398	00	16	09	0
	-	-		-			-	-	
	0.01132	1.5529		0.1406	-	0.00	0.0147	2.0462	0.041
ROA	0	61	0.1211	13	9.624820	00	70	84	3
R-	0.94909					0.15			0.008
squared	5					6843			168
Adjusted									
R-	0.94342					0.15			0.006
squared	0.94342					5150			0.000 176
Prob (F-	1(7,407					02.6			4 100
statistic)	167.427 9					92.6 3715			4.100 952
C:	0.00000					0.00			0.043
Sig	0.00000					0.00			392
D-W	0.75566								
statistics	3					0.08			0.668
					M	3064			514
					Means fixed is				
Hausma					accepted				
n test		Chi-		Prob	accepted				
		Sq. d.	Chi-Sq. d.f. 6	0.0007					
Cross		11.483							
section		141	0.0000						

(TABLE 4)

The regression analysis is used to investigate the relationship among determinants of financial structure and financial structure. Regression results are presented on TABLE 2. The result from regression model denotes that independent variable explain the debt ratio is 15 % which his quite low. The capital structure and ROA are negatively associated.

Macroeconomic variable and capital structure

Descriptive statistics shows that GDP has 7.4 % mean and 7.25 median. On the other hand CPI has 695 mean and 711 median. Average inflation is 4.95 and median is 4.45.this study consider the value of firm with the measurement of price to book and also known as tobins Q. the mean of price to book is 12.39 and 4063 median. Following table clearly shows that GDP, CPI and INF are normally distributed but ROA and Price to Book are not.

GDP	CPI	ROA	PRICE_TO_BOOK	INF
7.433300	695.4000	15.05743	12.39320	4.956900
7.256500	711.0000	10.24851	4.635000	4.456000
10.30000	889.0000	196.2883	232.7099	8.984000
5.500000	450.0000	-6.798488	1.194686	2.039000
1.280854	148.8316	20.18781	28.61123	2.740712
0.758879	-0.218569	6.231492	5.484015	0.250474
3.215531	1.640348	52. <mark>828</mark> 20	36.62718	1.353021
12.72941	11.04861	14290.12	6776.712	16.05223
0.001721	0.003989	0.000000	0.000000	0.000327
)	
966.3290	90402.00	1957.466	1611.116	644.3970
211.6358	2857457.	52573.67	105599.7	968.9838
130	130	130	130	130
	7.433300 7.256500 10.30000 5.500000 1.280854 0.758879 3.215531 12.72941 0.001721 966.3290 211.6358	7.433300 695.4000 7.256500 711.0000 10.30000 889.0000 5.500000 450.0000 1.280854 148.8316 0.758879 -0.218569 3.215531 1.640348 12.72941 11.04861 0.001721 0.003989 966.3290 90402.00 211.6358 2857457.	7.433300 695.4000 15.05743 7.256500 711.0000 10.24851 10.30000 889.0000 196.2883 5.500000 450.0000 -6.798488 1.280854 148.8316 20.18781 0.758879 -0.218569 6.231492 3.215531 1.640348 52.82820 12.72941 11.04861 14290.12 0.001721 0.003989 0.000000 966.3290 90402.00 1957.466 211.6358 2857457. 52573.67	7.433300 695.4000 15.05743 12.39320 7.256500 711.0000 10.24851 4.635000 10.30000 889.0000 196.2883 232.7099 5.500000 450.0000 -6.798488 1.194686 1.280854 148.8316 20.18781 28.61123 0.758879 -0.218569 6.231492 5.484015 3.215531 1.640348 52.82820 36.62718 12.72941 11.04861 14290.12 6776.712 0.001721 0.003989 0.000000 0.000000 966.3290 90402.00 1957.466 1611.116 211.6358 2857457. 52573.67 105599.7

(TABLE 5)

Independ ent variable	Pooled OLS			Fixed Effect			Random Effect		
	Coefficien t	t- statistic s	P value	Coeffici ent	t-statistics	P value	Coefficie nt	t- statistic s	P value
С	44.85014	1.54933 5	0.1238	44.8501 4	1.758152	0.081 4	44.85014	1.74831 1	0.0828
GDP	-0.355987	0.23353 1	0.8157	- 0.35598 7	-0.265006	0.791 5	- 0.355987	- 0.26500 6	0.7914

		-		-				-	
		1.61319		2.04268		0.069	-	1.83061	
INF	-2.042689	3	0.1092	9	-1.830617	8	2.042689	7	0.0695
		-		-				-	
		1.00863		0.02447		0.254	-	1.14457	
CPI	-0.024477	4	0.3151	7	-1.144577	8	0.024477	7	0.2546
R-squared						0.314			0.0311
_			0.024337			493			21
Adjusted						0.224			0.0080
R-squared			0.001107			0.224 295			0.0080 53
Prob (F-			0.001107			295			
statistic)						3.486			1.3490
statistic)			1.047652			692			85
Sig						0.000			0.2615
C			0.373988			066			37
D-W						2.162			
statistics			1 510100			140			1.9562
			1.519132						22
					Means				
Hausman	Chi-Sq.				Random is				
test	Statistic	Chi-Sq.			accepted				
	00000	d.	Chi-Sq.						
			d.f. 3	1.0000					
Cross									
section			0.0000						
			0.0000						

(TABLE 6)

The regression analysis is used to investigate the relationship among macroeconomic variable and financial structure. Regression results are presented on TABLE 2. The result from regression model denotes that independent variable explain the debt ratio is 0.3 % which his quite low. The inflation and capital structure are negatively associated at 10% significance level.

Price to book and Macroeconomic variables

Independ	Pooled OLS	5		Fixed Eff	ect		Random B	Effect	
ent variable									
	Coefficien	t-	P value	Coeffici	t-statistics	Р	Coefficie	t-	P value
	t	statistic		ent		value	nt	statistic	
		S						S	
С		0.39228		16.1250		0.574		0.55113	
-	16.12500	4	0.6955	0	0.562432	9	16.12500	3	0.5825
		-		0.000.60		0.720		0.05000	
		0.29483		0.00862		0.720		0.35888	
GDP	-0.638196	9	0.7686	6	0.358885	3	0.008626	5	0.7203
		-		-				-	
		0.55944		0.63819		0.673	-	0.42272	
INF	-1.005891	1	0.5769	6	-0.422721	3	0.638196	1	0.6732
CPI	0.008626	0.25031	0.8028	-	-0.802091	0.424	-	-	0.4240

Page 67

		4		1.00589		2	1.005891	0.80209	
				1				1	
R-squared						0.568			0.0414
			0.020585			915			14
Adjusted						0.510			0.0105
R-squared						0.512			0.0185
			0.882730			194			91
Probe (F-						10.02			1.8145
statistic)			0.452065			10.02 994			1.8143 39
			0.432003						
Sig			0.000720			0.000			0.1478
5 W			0.882730			000			71
D-W						2.605			2.3573
statistics			1.146781			461			2.3373
			1.140701		Means				
					fixed is				
Housman	Chi-Sq.				accepted				
test	Statistic	Chi-Sq.			uccepted				
	00000	d.	Chi-Sq.						
			doffs. 3	1.0000					
Cross									
section			0.0000						
			0.0000						

(TABLE 7)

The regression analysis is used to investigate the relationship among macroeconomic variable and financial structure. Regression results are presented on TABLE 2. The result from regression model denotes that independent variable explain the debt ratio is 4.14 % which his quite low. The inflation and value of firm found insignificant.

ROA and firm value

The regression analysis is used to investigate the relationship among determinates of financial structure and financial structure. Regression results are presented on TABLE 2. The result from regression model denotes that independent variable explain the is .6% % which his quite low. The capital ROA and price to book are negatively associated.

Independ	Pooled OLS	5		Fixed Eff	ect		Random E	Effect	
ent variable									
variable									
	Coefficien	t-	P value	Coeffici	t-statistics	Р	Coefficie	t-	P value
	t	statistic		ent		value	nt	statistic	
		s						S	
С		7.24795		14.2567		0.000		6.04960	
	13.93152	3	0.0000	4	4.338648	0	2.768316	9	0.0000
								-	
		1.46893		0.06460		0.370	-	2.04628	
ROA	0.090849	9	0.1443	7	0.897970	9	0.014770	4	0.0413
R-squared						0.292			0.0062
-	0.016578					041			98
Adjusted									-
R-squared						0.212			0.0014
÷	0.008895					701			66

Prob (F- statistic)	2.157783					3.680		0.8112
	2.157783					865		07
Sig						0.000		0.3694
	0.144303					068		55
D-W								
statistics						2.155		1.9687
	1.561329					418		90
					Means			
Hausman		Chi-Sq.			random is			
		d.			accepted			
test		0.23360		Prob	1			
		2	Chi-Sq.	0.6289				
			d.f. 1					
Cross								
section								
			0.0000					

(TABLE 8)

5- CONCLUSION

The study has found that determinants profitability, liquidity, size growth opportunity and age has strong relation with financial decision in Indian companies and also seen that capital structure decision has strong impact on firms performance similarly firm performance is related with firm value. On the other hand macroeconomic variable among GDP, inflation and CPI, CPI has no relation with performance as well as value of firm. GDP has relation with firms' value and inflation has strong relation with the firm performance.

This study is helpful to understand the current scenario of the factors effecting the financial decision of firm. in addition for further development it is we can include some more economic measurement and other firm value measurements.

6- REFERENCES

- i. Aydin Ozkan, (2001). Determinants of Capital Structure and Adjustment to Long Run Target: Evidence From UK Company Panel Data, Journal of Business Finance & Accounting, 28, (1-2), 175-198
- ii. Bennett, M. & Donnelly, R. (1993). The determinants of capital structure: some UK evidence. *British Accounting Review*. 25(1), 43-59.

- iii. Booth, M. A. ; Allan, G. L. ; Frances, J. ; Parkinson, S., (2001).
 Replacement of fish meal in diets for Australian silver perch, Bidyanus bidyanus. IV.
 Effects of dehulling and protein concentration on digestibility of grain legumes. *Aquaculture*, 196 (1-2): 67-85.
- iv. Bowen RM, Daley LA, Huber CC. Evidence on the existence and determinants of inter-industry differences in leverage(1982). *Financce Management*; 11(4):10 – 20.
- v. Chen, J. J. (2004). Determinants of capital structure of Chineselisted companies. *Journal of Business Research*. 57(12), 1341-1351.
- vi. Dammon, Robert M & Senbet, Lemma W, (1988). "The Effect of Taxes and Depreciation on Corporate Investment and Financial Leverage," *Journal of Finance, American Finance Association*, vol. 43(2), pages 357-373, June
- vii. Frank, Murray Z. and Goyal, Vidhan K. (2003)." Capital Structure Decisions" .AFA 2004 San Diego Meetings. Available at SSRN: https://ssrn.com/abstract=3

96020. or http://dx.doi.org/10.213 9/ssrn.396020

- viii. Friend I, Lang L.(1988). " An empirical test of the impact of managerial self-interest on corporate capital structure. J *Finance* 1988", 43:271 – 81.
- ix. Gaud, P., Jani, E., Hoesli, M., Bender, A. (2005). "The capital structure of Swiss companies: an empirical analysis using dynamic panel data". *European Financial Management*, vol. 11, nr. 1, pag. 51-69.
- x. Griner EH, Gordon LA. (1995). " Internal cash flow, insider ownership and capital expenditures: a test of the pecking order and managerial hypothesis". *J Bus Finance Account* 1995;22:179 – 97
- xi. HARRIS, MILTON., & RAVIV, ARTUR. (1990). Capital Structure and the Informational Role of Debt. *The Journal of Finance*, 45(2), 321-349.
- xii. Huang S.G.H., & Song F.M. (2006). "The Determinants of Capital Structure: Evidence from China". China Economic Review, 17, pp. 14-35.
- xiii. James H. Scott, (1977) Jr. "Bankruptcy, Secured Debt, and Optimal Capital Structure". *The Journal of Finance*.
- xiv. Jensen and Mekling, 1976) Jensen, M., Meckling, W. (1976), "Theory of the Firm: Managerial Behaviour, Agency Costs and Capital Structure", Journal of Financial Economics, 39: 305-360.
- xv. Kester, W. C. "Capital and Ownership Structure: A Comparison of United States and Japanese Manufacturing Corporations." Financial Management 15, no. 1 (Spring 1986): 5–16.

- xvi. Marsh, P. (1982), "The Choice Between Equality and Debt: An Empirical Study", *Journal of Finance*, 37(1): 121-144.
- xvii. Mayers, S.C. & Majluf, N. (1984). Corporate financing and investment decisons when firms have information that investors do not. *Journal of Financial Economics*, 13(2), 187-222.
- xviii. Michaelas, N., Chittenden,
 F., Poutziouris, P. (1999),
 "Financial Policy and Capital Structure Choice in U.K. SMEs: Empirical Evidence from Company Panel Data", Small Business Economics, Vol. 12 No. 2, pp. 113–130
- xix. Miller, M., Modigliani, F., (1958). The Cost of Capital, Corporation Finance, and the Theory of Investment.
- xx. Modigliani, F., Miller, M.H., (1963). Corporate Income Taxes and the Cost of Capital: A Correction.Modigilani and Miller (1963)
- xxi. Myers, S.C., (1984). "The capital structure puzzle". *Journal* of Finance, 39, 575-92.
- xxii. Rajan, R. G., Zingales, L. (1995), "What do we know about capital structure? Some evidence from international data", *Journal* of Finance, 50(5): 1421-1460.
- xxiii. Shyam-Sunder, L. & Myers, S.C. (1999). "Testing static tradeoff against pecking order models of capital structure". *Journal of Financial Economics*, 51(2), 219-244
- xxiv. Titman, S., Wessels, R. (1988), "The Determinants of Capital Structure Choice", Journal of Finance, 43(1):1-19
- xxv. Tiwari, A. K., & Krishnankutty, R. (2014)." Determinants of capital structure: comparison of empirical evidence

for the use of different estimators". *Theoretical & Applied Economics*, 21(12), 63-82.

- xxvi. Walsh, E. J., Ryan, J. (1997). "Agency and Tax Explanation of Security Insurance Decisions", Journal of Business Finance and Accounting, 24 (7&8): 943-961.
- xxvii. Wiwattanakantang, Yupana, (1999). "An empirical study on the determinants of the capital structure of Thai firms," *Pacific-Basin Finance Journal*, Elsevier, vol. 7(3-4), pages 371-403, August.
- xxviii. Heshmati, A. (2001), "The dynamics of capital structure: evidence from Swedish micro and small firms", *Research in Banking and Finance*, Vol. 2 No. 1, pp. 199-241.
- xxix. Kester, W. (1986), Capital and ownership structure: a comparison of United States and Japanese manufacturing corporations, *Financial Management*, 15: 5-16.
- xxx. Dhankar R.S. and Boora
 A.S. (1996): Cost of capital, optimal capital structure and value of firm: All empirical study of Indian companies, *The Indian Institute of Management*, Vol.21
- xxxi. Bradley, Michael & A Jarrell, Gregg & Han Kim, E. (1984). On the Existence of an Optimal Capital Structure. *Journal of Finance*. 39. 857-78. 10.1111/j.1540-6261.1984.tb03680.x.
- xxxii. Robert A. Taggart, Jr., 1985. "<u>Secular Patterns in the</u> <u>Financing of U.S.</u> <u>Corporations," NBER Chapters,in:</u> *Corporate Capital Structures in the United States*, pages 13-80 National Bureau of Economic Research, Inc.

- xxxiii. Maddala, G. S., & Wu, S. (1999). A comparative study of unit root tests with panel data and a new simple test. *Oxford Bulletin of Economics and statistics*, 61 (S1), 631-652.
- Kremp, Е., E.. xxxiv. Stöss, Gerdesmeier, D. (1999). Estimation of a debt function: evidence from French and German firm panel data, in Sauvé, A., Scheuer, M. (ed.) Corporate finance in Germany and France. A joint research project of Deutsche Bundesbank and the Banque de France, SSRN working paper
- XXXV. Gaud, Philippe and Jani, Elion and Hoesli, Martin Edward Ralph and Bender, Andre, The Capital Structure of **Swiss** Companies: Empirical An Analysis Using Dynamic Panel Data (January 2003). FAME Research Paper No. 68. Available SSRN: https://ssrn.com/abstract=3 78120 or http://dx.doi.org/10.2139 /ssrn.378120
- xxxvi. Orman, Cuneyt & Koksal, Bulent. (2015). Determinants of Capital Structure: Evidence from a Major Developing Economy. *Small Business Economics*. 44. 10.1007/s11187-014-9597-x.
- xxxvii. Carlos Alberto Correa, Leonardo Fernando Cruz Basso and Wilson Toshiro Nakamura, A estrutura de capital das maiores empresas brasileiras: análise empírica das teorias de Pecking Order e trade-off, usando panel data, RAM. Revista de Administração Mackenzie, 14, 4, (106), (2013).
- xxxviii. Espinosa M., C., Maquieira
 V., C., Vieito, J., & González A.,
 M. (2012). Capital Structures in
 Developing Countries: *The Latin American* case. Investigación *Económica*, 71(282), 35-54.
 Retrieved from

http://www.jstor.org/stable/42779 250

- xxxix. Pandey, I.M. (2004) Financial Management. Vikas Publishing House Pvt. Ltd., New Delhi, 517-540
- xl. Qureshi, M. A. (2009). Does Pecking Order Theory Explain Leverage Behaviour in Pakistan? *Applied Financial Economics*, 19(17), 1365-1370.
- xli. Wiwattanakantang, Y. (1999). An empirical study on the determinants of the capital structure of Thai companys. *PacificBasin Finance Journal*, 7(3), 371-403
- xlii. Abzari, Mehdi & Fathi, Saeed. (2012). Analyzing the Impact of Financial Managers' Perception of Macroeconomic Variables on Capital Structure of Firms Listed in Tehran Stock Exchange Fateme Nematizadeh. International Journal of Academic Research in Business and Social Sciences. 02.
- xliii. Aysen Doyran, Mine.
 (2013). Net interest margins and firm performance in developing countries: Evidence from Argentine commercial banks. *Management Research Review*. 36. 10.1108/MRR-05-2012-0100.